Grade 11/12 Math Circles
 November 30, 2022
 Generating Functions 2 - Problem Set

1. Create combinatorial classes and corresponding generating functions for the following situations:
(a) 0-1 strings where we wish to count by the length of the strings.
(b) 0-1-2 strings where we wish to count by the length of the strings.
(c) Strings with k possible number entries, where we wish to count by the length of the strings.
(d) Drawing socks out of a basket, where there are 3 red socks, 5 blue socks, 10 purple socks and 12 green socks.
2. Recall that $\left[z^{n}\right] F(z)$ represents the coefficient of z^{n} in the generating function $F(z)$. From your answers to Problem 1, find an expression for the following coefficients and describe each coefficient represents:
(a) $\left[z^{12}\right] F(z)$, where $F(z)$ is the generating function from Problem 1a.
(b) $\left[z^{40}\right] F(z)$, where $F(z)$ is the generating function from Problem 1 b .
(c) $\left[z^{n}\right] F(z)$, where $F(z)$ is the generating function from Problem 1c.
3. Find a generating function for 0-1-2 strings which start with 012 .
4. Find an expression for the number of ways to make $\$ 2.65$ in change (with 5,10 and 25 cent coins available, as well as 1 and 2 dollar coins).
5. Find two 4 -sided dice such that:

- Each side has a positive integer number of dots
- The two dice are not the same
- The probability of rolling a sum of $2, \ldots, 8$ on these dice is the same as the probabilities for regular 4-sided dice

Hint: $\left(z+z^{2}+z^{3}+z^{4}\right)^{2}=\left(z^{2}+1\right)^{2}(z+1)^{2} z^{2}$
6. Challenge: For any two n-sided fair dice ($n \geq 2$), will there always exist two other n-sided dice such that:

- Each side has a positive integer number of dots
- The two dice are not the same
- The probability of rolling a sum of $2,3,4, \ldots, 2 n$ on these dice is the same as the probabilities for two fair n-sided dice

7. How many compositions of n have k parts, where each part is an odd number?
8. Find the generating function for compositions of n which have k parts, where each part is at most 3.
9. Find the generating function for compositions of n which have 1 or 2 parts.
10. Challenge: How many compositions of n are there (of any number of parts)?
